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In the field of solid-state chemistry and physics, there is much -- = Nif---Br— Ni™—Br - - - N - - Br — (a)
interest in one-dimensional (1-D) electron systems because pro-
nounced phenomena characteristic of 1-D systems have been . __ _ i g*— Ni - - - B°= - = Ni| — B (®)
observed such aszthe_ Haldane gap in integer spin _antlf?rromagnet'CFigure 1. Schematic possible chain structures in (a) CDW and (b) spin-
(AF) compounds? solitons and polarons observedirconjugated Peierls states in [NiBr(chxg)Br.. In CDW and spin-Peierls states,
polymers3# slow relaxation of magnetization in several ferromag- nonequivalent Ni and Br sites are formed, respectively.

netic and ferrimagnetic compounds known as single-chain-magnets Quite recently, the magnetic susceptibiligy 6f this Ni complex

57 e i o
(SCMs)>"" etc. Halogen-bridged 1-D metal complexes (MX-chains) was measured using a single crystal with few Curie impurities, and

alsq have been attractive ta_rgets because of th_e highly 'SO'?‘ted 1'Da rapid and isotropic decrease in susceptibility was observed below
chain structure and the variety of the electronic states which can

be tuned by substituting those components, e.g., central metal (M) ca. 100 K3 indicating the occurrence of some transition to a
. . S A . 'nonmagnetic ground state. This decrease has not been previousl
in-plane ligand (L), bridging halogen (X), and counteranion (Y). 9 9 P y

MX-chai | ith 2 mixed-val TUCHTE M2 observed because of a large amount of Curie impurifés.
--X—I\;I(‘:”T?(?-c-m(]l\el efe;(\j/vl Pt"a )Tz(ec[vaB?nI(;ehsa\r/l;C;;en widely Furthermore, Bragg spots corresponding to the two-fold periodicity
. T T T e P o ) have been observed below 40 K in an X-ray analysiale also

studied as 1-D materials with strong electrdattice interactions. v v W ! y ¥

. - . . measured the temperature dependencg w$ing single crystals.
Their Peierls distorted 1-D structure was noted as a charge-density: P b £ g sing Y

. . - -2 These data are shown in the Supporting Information. Obseyved
wave (CDW) state, and unique optical and dynamical properties o :

- . data exhibited a clear decrease below 100 K upon cooling under a
such as overtone progressions in resonant Raman spectda

luminescence with a large Stokes shift well as the lona-range static magnetic field (1 T) parallel and perpendicular to the 1-D
rlrJ1i lr tion of V:'r'] lit ng nd polaron WI na 1-D h%ﬁgrhmvg chain direction in good agreement with the reported éfatdthough

gration ol spin-sofitons and polarons along 1-L ¢ € these data are enough evidence of spin-Peierls transition in usual
been reported. A recently prepared MX-chain complex [NiBr-

M compounds, two different nonmagnetic states with two-fold peri-
(chxn)]Br; (chxn: 1R,2R-diaminocyclohexane) has been reported - R :
Lo ) . odicity are possible in the present Ni complex, namely CDW and
to be quite different from the CDW complexes, and it crystallizes ety possibie 1 P ! piex y

. ) ! . spin-Peierls states (Figure 1).
- —Ni3+t—Rr—Ni3t—
gé'\lﬂlol: trl;li:bc%?;%;giuféoj:;;:zzs:i 3?(:32'1/2) iirth':INF" " To clarify this transition, we measured the temperature depen-

o . . X dence of the nuclear quadrupole resonance (NQR) frequency of
3dz orbital is strongly localized on the Ni atom owing to the strong bridai . . -
. . . . ridging Br atoms because the NQR is quite a sensitive probe for
electron correlationy ~ 5 eV)12 Quite a strong AF interactiord ( ging Q q P

— 3600 K) acts between neighboring Ni atoms through the Br 4p detecting subtle changes in the electron distribution around NQR

. . > . nuclei.
orbitals owing to the superexchange interactoBuch an electronic

. . ) . Single crystals of [NiBr(chxn)Br, were prepared by the
state is quite analogous to that of,GuQO; having a 1-D chain g L . .
expressed as O—C(?+—O—CL?*—O—, which is a representative electrochemical oxidation method reported in the literatbiiene

fthe st | lated 1-D elect tehd6 R tv. thi Br NQR measurement was performed between 3.8 and 300 K using
ot the strongly correlated 1-1 electron sys - Recently, tis 5 homemade pulsed spectrometer constructed in National Institute
Ni complex has also been interested from the viewpoint of applied for Materials Science (NIMS). The resonance signal was detected
science because of the largest third-order nonlinear optical suscep-by observing free induction decay signals (FID) after/a pulse
L ) 17 .
t|b|||t|es_thus far report_ed, amounting to *l‘?_:)esu. . . The resonance frequency was determined from the shape of the
Despite many experimental and theoretical studies for revealing FID signal. The sample temperature was controlled with an Oxford
the electronic structure in the present complex, no information of i
. . CF1200 cryostat and an ITC 503 temperature controller. Measured

the ground state has been obtained. Generall\g an'/, 1-D AF y P

single crystals were aligned so as that the pulsed rf field is
S)f/srt]em can be zxpecgs_'ddt?] formbtwo t);]pes of g;oug:distates. MOStperpendicular to the 1-D chain direction which is nearly parallel to
ofthe cc()jmi)otund S sttu 1€ s\'let eehn.s own tot. ayt srt?e as il the principal axis of the electric field gradient at Br nuclei.
aground state due to a weak interchain magnetic Interaction, whlle e pserved a single resonance line®d@r at 300 K (137.079
several other systems (mostly organic conduétof&in which

lect tribute to th r dc Peier] + 0.005 MHz) and a pair of lines 130.8240.01 and 147.786
electrons contribute fo the magnetism an uge€dorm a Peierls 0.01 MHz at 3.8 K. We assigned these resonance sign&fBto
distorted ground singlet state.

nuclei by observing correspondirigBr lines at 164.091 0.005
MHz (300 K), and 156.656- 0.01 and 176.904- 0.01 MHz (3.8

T The University of Tsukuba.

’;Japan National Institute for Materials Science. K) in good agreement with the reported isotope frequency ratio
Japan Advanced Institute of Science and Technology. 79R r/81R - 6 : :
Il present address: Tokyo Metropolitan University. ( Br/. B.r. 1.1969)%¢ These resonance frequenmgs could be assigned
UPresent address: Kyushu University. to bridging Br atoms and not to counter Br ions, beca(’8
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150 T T T T Br sites are formed, which is in good agreement with the two Br
XTI | i : | NQR lines. The splitting of the NQR signal indicates that a spin-

145 | —, Bavertheory | Peierls transition occurs in [NiBr(chxs}Br, in the range 46130

T i K. This explanation is consistent with the decrease in the magnetic

= susceptibility? observed below 100 K.

g 140 In summary, we observed clear evidence of the spin-Peierls

E transition in arS= 1/, 1-D Heisenberg AF complex [NiBr(chxs})

8 135 Br, with an enormorously largé value by the NQR method. This

- is the first report of spin-Peierls transition in the transition metal
130 complexes in which only d electrons withouelectrons contribute

0 50 100 150 200 250 300 to the magnetism: In addition, we.demonstrated a new experimental
method for studying the spin-Peierls system.

Acknowledgment. We are grateful to Drs. Kenjiro Hashi, and
Shinobu Ohki at the National Institute for Materials Science for
their kind technical assistance in measuring NQR.

Supporting Information Available: Magnetic susceptibility of the
NQR frequencies in compounds with-NBr covalent bonds were present complex (PDF). This material is available free of charge via
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NiBr,[P(CsH7)3]2” and 126.53 MHz in NiBfP(C4Hg)3] 22" at room
temperature, whereas ionic Br ions mostly exhibit resonanceé’fines
at frequencies of an order of magnitude lower than those in the

Temperature / K

Figure 2. Temperature dependences®Br NQR frequencies observed
in [NiBr(chxn),]Br,. Dotted line is an extrapolatiomt0 K according to
the Bayer theory.
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